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Abstract: This paper theoretically proves that the least square method for linear fitting after 
logarithmic transformation of data is essentially based on the principle of reducing relative error. 
Through empirical analysis and comparison with the traditional least square method, it is found that 
the least square method after logarithmic transformation of data has a higher precision in model 
fitting effect, and at the same time makes it possible to use the least square method after logarithmic 
transformation of data to fit the model accurately. Fitting the straight line gives better consideration 
to the information of all observation points.  

1. Introduction 

When the traditional least squares method is used to fit regression, it often considers eliminating 
the larger data which has great influence on the regression estimation (the original data is correct), 
but if the sample data is small, while it is removed, the sample will lose part of the information. If it 
is not removed, the regression line will shift to larger data points. As a result, the fitting accuracy of 
regression model is not high or the desired results cannot be obtained. Yimin Wang (1997) [1] thinks 
that the accuracy of curve fitting can be improved by considering relative error, which has been 
proved in engineering test. Bing Li(2007) [2] thinks that when the observed data are abnormal, 
Jacobi iteration pretreatment of the iteration matrix and the least square method can improve the 
accuracy of parameter estimation and fitting accuracy. At the same time, more scholars have applied 
least squares curve fitting to finance, physics, engineering and other fields, after processing data by 
various methods such as logarithmic transformation, exponential transformation, trigonometric 
function transformation, normalization, standardization, interpolation and so on, the least square 
method is used for curve fitting or prediction to improve the accuracy of the model [3-7]. 

2. The Principle of Traditional Least Square Method 

There is a linear relationship between a random variable  and 1p   independent variable

1 2, , , px x x
, which satisfies the relationship 
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Give n  groups of sample observation values  1 2 , 1, , , ; 1, ,i i i p ix x x y i n  
, the equation (1) can 

be written as 

                   nixxy ipipii ,,2,11,1110    ，          (2) 

The equivalent form is 
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WhereY  is the variable observation vector of 1n , X is a known design matrix of n p ,  is 

an unknown parameter vector of 1p and   is a random error vector. 

Take the length of the error vector  XY   squared
2

Y X  and minimize it, the error 

here refers to the total error. Remember as 

     2 '
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The Principle of Finding Extremum by Calculus, take the partial derivative of   and set it to 
zero, get the equations 
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Thus, the linear regression model can well fit the known data and make prediction. 

3. Error vector calculation after logarithmic transformation   

From Formula (2), logarithmic to  

                         (4) 
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In matrix form, equation (5) is transformed into 
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To differentiate from the preceding, order  '' ' '
1 2, , , nT y y y   ,by the same method as above 

'T X   
Take the length of the error vector ' 'T X    squared

2'T X   and minimize it, the error here 

refers to the total error. Similarly, the estimate of '  is obtained 

  1' ' 'X X X T
 
 . 

4. Relative error analysis 

For convenience, definition of relative error D ,the traditional least square method defines the 
relative error as follows 
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traditional theory of the method, for the data model with large difference, there is no need to 
eliminate the large dispersion or abnormal data. The method after processing data has the advantages 
of high fitting accuracy, and the relative error and the overall error are reduced. It can better take into 
account the information of all observation points. It can be used in finance, physics, engineering and 
other fields.  
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